If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-30x+12=0
a = 6; b = -30; c = +12;
Δ = b2-4ac
Δ = -302-4·6·12
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{17}}{2*6}=\frac{30-6\sqrt{17}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{17}}{2*6}=\frac{30+6\sqrt{17}}{12} $
| 6x-40=2x-8 | | x+x+10+x-8=162 | | 2.5x+2.5x+x+x=15 | | 5r+10=35 | | 14y=256+2y | | -4=1/14x | | 4n=-1n-6 | | 3r^2+6r-12=0 | | 4r(r+7)=0 | | Z=8.4z+8-6 | | (1/4)z-2/7=5/7 | | 4n+2=6*1/3n-2/3 | | 23-5x=21x+5 | | 14+y÷8=10 | | -2x+3x=6x | | 33/4*m=333/4 | | -15=y-17 | | 109+4x=117 | | 109+4x=82 | | 4x+6=10(x-3) | | 2x÷1=56 | | 34=v9+ 33 | | 73+3x=82 | | 2x÷1=57 | | 11/2*c=6 | | √r2+2r-4=0 | | 2q(9-q)=0 | | y+144y=0 | | C.c÷2=4.6 | | 157+11x=179 | | 6x+22=9x+x-5 | | x+4(x+2)=82 |